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A hybrid method for the problem of transient shock-induced filtration of the gas
flow through granular media is developed. The hybrid method combines a controlled
shock-tube test and Morrison’s simplified approach to the problem of gas filtration.
It is demonstrated that most pressure traces that have been recorded in various
laboratories with a large variety of granular material samples and under different
conditions are limited to situations in which the pressure losses in the flow are
dominated by the Forchheimer mechanism. The hybrid method enables these results
to be described by a single, universal pressure curve, and specification of the
Forchheimer coefficient which is one of the two key parameters responsible for
the correct simulation of the filtration-flow behaviour. The second key parameter,
the Darcy coefficient, cannot be evaluated by the available experimental results. To
overcome this shortcoming, a new controlled laboratory test that provides a wider
range of the flow conditions, from the Forchheimer to the developed mixed flow, was
conducted. In turn, a comprehensive gas dynamic analysis of the transient flow inside
the shock tube enables us to define, from the single controlled laboratory test, the
two coefficients of the Forchheimer resistance law, a and b.

1. Introduction
1.1. Formulation of the problem

A situation in which a shock wave impacts a granular bed is observed quite often in
soil mechanics. If a solid and heavy plate is placed at some distance underground,
normal to the air/soil interface, the overpressure, �P5, applied at the air/soil interface
is transformed inside the soil to a pulse of a diffusive type (Liang & Chao 1998). This
pulse is usually characterized by a rise time, tR , or the time required for the pressure
to reach a specified percentage (usually 90 %) of its final equilibrium value, i.e. �P5

(Holman 1994). Owing to the scaling effects or other reasons, the peak pressures and
the rise times registered in laboratory tests and those registered in free field tests
can be different. The reasons for this difference could be evaluated by the computer
modelling that is increasingly used nowadays (see e.g. Levy, Ben Dor & Sorek 1996;
Sodre & Parise 1998; Sen et al. 2005). However, because computer modelling is still
time consuming, experimental study that relies on empirical correlations predicting
the transient and the spatial dynamics of the pressure pulse is a superior approach.
Most investigators, when developing these correlations, limited themselves to easily
obtainable and reliably measured parameters (e.g. granular sample length, porosity,
etc.). The emphasis in these studies was on tests in shock tubes with short (about
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several centimetres long) artificial granular samples of spherical particles (see e.g.
Rogg, Hermann & Adomeit 1985; van der Grinten, van Dongen & van der Kogel
1985; Gelfand et al. 1989; Medvedev, Frolov & Gelfand 1990; Sakakita & Hayashi
1992; Engebretsen et al. 1996; Britan et al. 1997; Smeulders, van Dongen & Wisse
1997; Britan & Levy 2001; Mikami et al. 2001). In reality, however, when gas flows
into a backfill following an explosion, granular layers that are orders of magnitude
longer (a few metres) and contain non-spherical particles are of interest. Therefore,
excluding the general principles or laws that could relate shock-tube data to real field
conditions would make the pressure profiles that are recorded in shock-tube tests
useless for general applications.

In this context the hybrid method, which is presented below, looks very promising
since it allows the results of laboratory measurement to become closer to actual field
conditions (see Britan et al. 2001a, 2006). The hybrid method combines a controlled
shock tube test with Morrison’s approach to the problem of gas filtration (Morrison
1972, 1976, 1977; Asay, Son & Bdzil 1996). In Morrison’s approach the pressure
gradient, ∂P/∂x, in the filtration flow depends on the interstitial gas velocity Ṽ in a
generalized form that is commonly known as the Forchheimer resistance law (see also
Lage 1998):

∂P

∂x
= −aµ̃Ṽ − bρ̃Ṽ |Ṽ |. (1.1)

The first term, the Darcy term −aµ̃Ṽ , represents viscous losses, where µ̃ is the gas
viscosity (a tilde indicates dimensional values). The Darcy coefficient, a, is related to
the commonly used granular layer permeability, k0 and porosity, ε, through a = ε/k0.
The second term, the Forchheimer term −bρ̃Ṽ |Ṽ |, where ρ̃ is the gas density and
b is the Forchheimer coefficient, models the bulk form-drag force effect that is
frequently termed in the literature-inertial losses (Lage & Antohe 2000). The Darcy
and the Forchheimer coefficients, a and b, respectively, include reliably measured
characteristics of granular media, and hence their exact values are the key parameters
for correctly simulating the filtration flow.

For a granular medium composed of spherical granules, the Darcy, a, and the
Forchheimer, b, coefficients are functions of only the particle diameter, dp , and
the granular medium porosity, ε, through the following relations (Ergun 1952 and
Macdonalds et al. 1979):

a0 = 180
(1 − ε)2

ε2

1

d2
p

, b0 = 1.8
1 − ε

ε

1

dp

. (1.2a, b)

The subscript 0 denotes that these coefficients are for a granular medium that is
composed of spherical granules. Note that under these circumstances a0 = 55.55b2

0.
This study starts with a brief summary of a simplified mathematical model and

several important consequences, which are readily apparent from the model and
make the theoretical analysis more feasible. Then the strategy of the hybrid method
is presented. Conceptually, it is identical to a numerical simulation of the results
obtained in parallel with a controlled laboratory test. The prime objective of the
physical test is recording the gas pressure traces along a granular sample that is
placed against the rigid endwall of the shock tube and is subject to a normal impact
by a shock wave of a known intensity. The resulting pressure traces enable one to
specify the rise times, tR , as a function of the granular sample properties. This in turn
characterizes the dynamic response of the material to the impact. Further processing
of these data provides the value of the Forchheimer coefficient, b. With this value in
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hand the test is repeated with a much longer sample of the same material. Matching
between the simulated and the recorded pressure traces finally results in the value
of the Darcy coefficient, a. The reliability of the proposed method is illustrated by
numerous examples of regular shock tube tests with a focus on the critical importance
of the ratio of the rise time to the test time. As a last example, a recent shock tube
test with a 2.5 m long granular sample composed of natural quartz sand is presented,
analysed and discussed. A comprehensive analysis of the data obtained made it
possible to specify both the Darcy, a, and the Forchheimer, b, coefficients.

1.2. Governing equations

Prior to presenting the basic equations for the pressure rise that were developed by
Morrison (1972, 1976, 1977) the two non-dimensional parameters that were introduced
by Morrison (1972) to specify the type of filtration flow inside a granular column of
length, l, are introduced:

N =
P5 − P1

P1

=
�P5

P1

, (1.3a)

Ref =
ρ̃1�P5

µ̃2
1

b

a2

1

l
=

b

a2

1

l

Nc̃2
1

ν̃2
1γ

. (1.3b)

Here N is the non-dimensional intensity of the pressure impact that is imposed by
the shock wave reflected at the front edge of the granular sample, i.e. at its entrance,
Ref is the effective Reynolds number, ν̃1 is the kinematic viscosity, ρ̃1 is the density
(note that ν̃1 = µ̃1/ρ̃1 where µ̃1 is the dynamic viscosity) and c̃1 is the sound velocity
(i.e. c̃2

1 = (γP1)/ρ̃1) (subscript 1 refers to the parameters of the quiescent air ahead
of the incident shock wave). Note that this Reynolds number, which was originally
introduced by Morrison (1977), includes the granular column length, l, and the
parameters a and b which are closely related to the permeability and porosity of the
granular medium which, in turn, is related to the characteristic pore length. Hence,
the Reynolds number implicitly includes the pore length scale.

For reasons of convenience, the phenomenon will be analysed using a non-
dimensional approach. Since in Morrison’s approach the gas flow through the
granular column was considered to be isothermal, the density ρ̃ can expressed as
ρ̃ = ρ̃1(1 + Nθ ), where θ = (P − P1)/�P5 is the non-dimensional pressure. All the
information on the specific parameters of the granular medium, e.g. porosity, particle
diameter or shape, is included in the Darcy and the Forchheimer coefficients. The
non-dimensional variables for the distance, x, and the time, t , are

χ =
x

l
, τ1 =

t

tsc1
, (1.4a, b)

where l is the length of the granular column and tsc1 = l/Vsc. Following Morrison
(1972) the scaling factor for the velocity is Vsc =(�P5)/(alµ̃1). Thus the scaling factor
for the time, tsc1, is

tsc1 = l2
γ ν̃1

c̃2
1N

a. (1.4c)

As a consequence the non-dimensional form of the Forchheimer resistance law
(equation (1.1)) is

∂θ

∂χ
= −V − Ref (1 + Nθ ) V |V | . (1.5a)
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The mass conservation equation becomes

N
∂θ

∂τ1

+
∂

∂χ
[V (1 + Nθ)] = 0. (1.5b)

Combining equations (1.5a) and (1.5b) results in

∂θ

∂τ1

=
1√

1 + 4Ref (1 + Nθ )

∣∣∣∣ ∂θ

∂χ

∣∣∣∣

[(
1

N
+ θ

)
∂2θ

∂χ2
+

(
∂θ

∂χ

)2
]

. (1.6)

Equation (1.6), in which both the viscous and the inertial losses are accounted for,
describes the non-dimensional pressure distribution along the granular column. In
fact, it describes filtration flows that comply with the so-called mixed-flow conditions,
i.e. flows in which both the viscous and the inertial losses are dominant.

When Ref > 1 it is more convenient to replace, in equation (1.6), the time scaling
parameter, τ1, by another time scaling parameter, τ2 (see Morrison 1976):

τ2 =
t

tsc2
, (1.7a)

where

tsc2 = tsc1
√

Ref =
l1.5

c̃1

√
bγ

N
. (1.7b)

With tsc2 in hand equation (1.6) assumes a form which also describes filtration flows
that comply with the so-called mixed-flow conditions, when the role of the viscous
losses is much smaller:

∂θ

∂τ2

=

√
Ref

1 + 4Ref (1 + Nθ ) |∂θ/∂χ |

[(
1

N
+ θ

)
∂2θ

∂χ2
+

(
∂θ

∂χ

)2
]

. (1.8)

When only viscous losses dominate, i.e. when Ref → 0, equation (1.6) is reduced to

∂θ

∂τ1

=

(
1

N
+ θ

)
∂2θ

∂χ2
+

(
∂θ

∂χ

)2

, (1.9a)

which describes filtration flows that comply with the so-called Darcy-flow conditions
or the Darcy-flow domain. Note that while the Darcy flow is by definition linear,
substitution of the gas velocity V = −∂θ/∂χ into the mass conservation equation (1.5b)
results in nonlinear equation (1.9a). When only inertial losses dominate, i.e. when
Ref → ∞, the common equation (1.8) is reduced to

∂θ

∂τ2

=
0.5√

(1 + Nθ ) |∂θ/∂χ |

[(
1

N
+ θ

)
∂2θ

∂χ2
+

(
∂θ

∂χ

)2
]

, (1.9b)

which describes filtration flows that comply with the so-called Forchheimer-flow
conditions or the Forchheimer-flow domain.

The problem of numerically simulating gas filtration could be formulated as follows.
A granular sample of unit length is subject to a pressure step loading at its front
edge while at its rear end an impermeability condition is imposed. The objective is to
calculate the non-dimensional pressure distribution along the sample length. Note that
neither equation (1.9a) nor (1.9b) includes specific parameters of the granular medium
considered. Hence their solutions are valid for granular samples of any length and
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properties. Unlike (1.9), equations (1.6) and (1.8) depend directly or explicitly (recall
that τ = f (a)] on the material properties through the effective Reynolds number, Ref .
The boundary conditions, which are the same for all the above-mentioned forms of
Morrison’s equations (equations (1.6), (1.8), (1.9a) and (1.9b) are

θ(0, τ ) = 1, ∂θ(1, τ )/∂χ = 0, (1.10a)

and the initial condition, which is also the same for all these equations, is

θ(χ, 0) = 0. (1.10b)

1.3. Similarity of the pressure profiles and the boundaries between
the various flow domains

Since the two extreme flow domains that are described by equations (1.9a) and
(1.9b) include only a single parameter, N , their solutions, namely the non-dimensional
pressure profile, θ(τ ), are invariant with the properties of the granular samples. This
feature of universality has some important consequences:

(i) The first is the interchangeability of the pressure profiles. This feature is valid
for two granular samples of different lengths, but composed of the same material and
subjected to a similar and constant pressure loading that complies with the boundary
conditions (1.10a). This means that the dimensional pressure profile, P (xl, t), recorded
in the cross-section xl of a granular sample of length l, is identical to the scaled
pressure profile, P (xL, t∗), recorded in the cross-section xL of another granular sample
that is composed of the same material but has a different length L, provided

xL = xl(L/l) and t∗ = t(L/l)j , (1.11)

where j = 2 for the Darcy flow and j =1.5 for the Forchheimer flow. (Note that the
difference in the power j arises from equations (1.4c) and (1.7b).

(ii) The second is related to the non-dimensional rise times, τD
1 and τF

2 . Based
on the non-dimensional notation, the rise time implies that θ(χ, τ )|χ=1 = 0.9. For the
known impact intensity, N , the rise times τD

1 and τF
2 are universal constants that show

no dependence on the material properties. Then equations (1.4b) and (1.4c) imply
that in the Darcy-flow domain:

tD
R = l2

(
γ ν̃1

c̃2
1N

a

)
τD
1 . (1.12)

Similarly, equations (1.7a) and (1.7b) imply that in the Forchheimer-flow domain:

tF
R = l1.5

(
1

c̃1

√
bγ

N

)
τF
2 . (1.13)

As will be shown below, the concept of the two limiting flow domains is the main
tool for both the data processing and the scaling of the pressure traces that are
obtained in controlled laboratory tests to real field conditions.

The present discussion centres on the techniques that specify the domains
appropriate to the different flow types. The manner in which the boundaries separating
the limiting flow domains were determined is demonstrated in figures 1(a) and 1(b).
Using a fixed value of N and continuously varying the Reynolds number, Ref ,
numerical solutions of equation (1.6) were generated until the resulting endwall
pressure curve matched one of the limiting curves that are described by either
equation (1.9a) or equation (1.9b). Since the resulting rise time, τR , also tends to the
limiting values τD

1 or τF
2 , the final decision on the optimal matching was based on a



152 A. Britan, H. Shapiro and G. Ben-Dor

1.0
(a)

0.8

0.6

0.4

0.2

0 0.4 0.8 1.2

θ

τ1
D

τ1

Ref = 0.02

0.04

0.25

0.1

1.0
(b)

0.8

0.6

0.4

0.2

0 0.5 1.0 2.01.5
τ2

Ref = 52

0.13
3

1

Figure 1. Two typical examples demonstrating the method that specifies the critical values of
the Reynolds number, Ref , for (a) Darcy and (b) Forchheimer flows. The incident shock wave
Mach number is Ms = 1.4. The limiting curves are shown by thick solid lines. The thin solid
lines with arrows show the rise time for the limiting curve.

comparison between these values. The simulated pressure profiles were considered to
be equivalent of the limiting curves if the relative differences between the rise times,
τR and τD

1 or τF
2 , was less than 7 %, i.e.

�τ1 =
τr − τD

1

τD
1

� � = 0.07, �τ2 =
τr − τF

2

τF
2

� � = 0.07 (1.14a, b)

The Reynolds number that ensures optimal matching can be referred to as a ‘critical’
Reynolds number for the Darcy, ReD

f , or for the Forchheimer, ReF
f , flow domains.

Note that �= 7 % is large enough to distinguish between the two pressure curves.
This value is usually adopted as the standard uncertainty of pressure measurements
in shock tube tests.

After obtaining a series of solutions for shock-wave Mach numbers in the range
1.1 � Ms � 2.0, the following two correlations describing the boundary separating the
three flow domains mentioned above were specified:

(i) The boundary separating the Darcy- and the mixed-flow domains is

ReD
f = 0.1188M−3.448

s . (1.15)

(ii) The boundary separating the mixed- and the Forchheimer-flow domains is

ReF
f = 85.458M−4.181

s . (1.16)

Hence:
(i) Experiments for which Ref <ReD

f comply with the Darcy-flow domain,

(ii) experiments for which Ref > ReF
f comply with the Forchheimer-flow domain,

and
(iii) experiments for which ReD

f < Ref <ReF
f comply with the mixed-flow domain.

The corresponding two correlations for the non-dimensional rise times are

τD
1 = −14.184 + 31.932Ms − 25.693M2

s + 9.249M3
s − 1.251M4

s , (1.17)

τF
2 = −3.206 + 3.255Ms. (1.18)
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Figure 2. The initial conditions of relevant experiments conducted in conventional shock
tube in a variety of laboratories. The vertical lines indicate the experiments that are detailed
in table 1. The numbers correspond to the Test no. column in table 1.

2. Strategy for the controlled laboratory test
The main objective of the hybrid method developed here which specifies the

values of the Darcy coefficient, a, and the Forchheimer coefficient, b, in the so-called
Forchheimer resistance law (see equation (1.1)), is to record the transient pressure field
upstream and inside the granular column. Measurements of this kind have been the
subject of many published experimental investigations; the range of the conditions
that were involved in these experiments has not been analysed yet. As will be shown
below, this range has a particular importance because it determines how far the
problem could be solved in conventional laboratory tests.

2.1. Shock tube capabilities

Figure 2 presents the conditions of 42 different shock-tube experiments (by others
and ours) that have been published over the years in the literature (for details see
table 1). Since most of the granular samples in these experiments were artificial and
were composed of smooth spherical granules, the effective Reynolds numbers were
calculated from

Ref =

(
ε

1 − ε

)3
1

18000

N

ν̃2
1

d3
p

l

c̃2
1

γ
, (2.1)

which is readily obtained from equations (1.2a), (1.2b) and (1.3b). Figure 2 reveals
that:

1. All but two sets of experimental results fall in the Forchheimer-flow domain.
2. There are very few experimental results in the mixed-flow domain. These are the

experiments with the smallest particles dp � 0.5 mm and the relatively long granular
samples l � 80 mm or experiments with short samples that are composed of sandstone-
like porous material.

3. There are no experiments in the Darcy-flow domain.
4. For the considered range of incident shock wave Mach numbers, 1.1 � Ms � 1.5,

the lowest value of the effective Reynolds number was obtained in the experiments of
van der Grinten et al. (1985). However even for this case, the relatively long granular
column composed of natural sand that was used was not sufficient to be in the
Darcy-flow domain.
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Test no. Ms Material l [mm] dp [mm] ε Ref Source

1.1–1.2 1.14 Glass 56; 61 3.0; 1.3 0.32 772; 57 Smeulders et al. (1997)
2.1 1.14 Sand 152.5 0.5 0.35 1.97 ”
2.2 1.14 Sand 1895 0.5 0.33 0.121 van der Grinten et al. (1985)
3.1–3.3 1.32 Al2O3 22.5–138 1.67 0.46 924–5670 Britan et al. (1997)
3.4–3.7 1.32 PVC 39-138 3.33 0.39 3094–10964 ”
4.1–4.8 1.32 Steel 17–138 1.04 0.40 107–867 ”
4.9–4.12 1.32 Potash 12–53 0.45 0.43 33–144 ”
5 1.32 Steel 81, 138 0.45 0.39 7.6–13 ”
5 1.32 Potash 96; 138 0.45 0.43 12.6–17.7 ”
6 1.33 Ceramic 15–60 0.77 0.44 171–683 Mikami et al. (2001)
7.1–7.7 1.46 Steel 5–60 0.5 0.4 46–555 Britan et al. (2001b)
7.8–7.11 1.46 Glass 5–38 0.5 0.4 73–555 ”
7.12–7.15 1.46 Rimax 30–66 1.0 0.35 177–390 ”
7.16–7.18 1.46 Rimax 48–84 2.4 0.42 4682–8195 ”
7.19 1.46 Steel 22 4.4 0.49 257,340 ”
7.20–7.22 1.46 Steel 12–63 2.0 0.39 2487–13056 ”
7.23–7.25 1.46 Steel 4–49 1.0 0.35 238–2924 ”
8 1.31 Sand-Stone 20 0.23 2.85 Smeulders et al. (1997)

Table 1. Conditions of 42 published experiments that were conducted in different shock
tubes.

This situation is a direct result of the fact that the shock-tube length restricts the
duration (i.e. the test time, �t5) of steady conditions at the entrance cross-section (i.e.
the front edge) of the granular column. For reliable measurements, the rise time, tR ,
has to be at most equal to �t5, i.e.

tR � �t5. (2.2)

Based on the ‘classical’ shock-tube theory (see e.g. Nishida 2001) the test time, �t5,
for weak shock waves (Ms < 2) is

�t5 ≈ ρ̃1

ρ̃2

lch

c̃1Ms

. (2.3)

Here lch is the length of the shock-tube channel (driven section),

ρ̃2

ρ̃1

=
(γ + 1) M2

s

2 + (γ − 1)M2
s

is the density ratio across the incident shock wave, c̃1 is the speed of sound
in undisturbed air, and γ = 1.4 is the adiabatic coefficient. Replacing ρ̃2/ρ̃1 in
equation (2.3) results in

�t5 ≈
lch

[
2 + (γ − 1)M2

s

]
(γ + 1)c̃1M3

s

. (2.4)

For spherical particles, inside the Forchheimer-flow domain, the dimensional rise time,
tR , could be obtained using correlation (1.18), where the parameter τF

2 is equal to
tR/tsc2. Here tsc2 is the time-scaling parameter, which was introduced in (1.7b), and
the Forchheimer coefficient, b, is given by equation (1.2b). The resulting expression
for the dimensional rise time, tR , is

tR = τF
2 tsc2 = τF

2 l

√
1.8

l

dp

ρ̃1

ρ̃2

γP1

�P5

1 − ε

ε
. (2.5)
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Figure 3. Results of a series of solutions of equation (2.6) for two values of the incident
shock-wave Mach number Ms = 1.3 (solid lines) and Ms =1.5 (dashed lines) and three relative
lengths of the granular sample l/dp = 10, 40 and 200.

In order to clarify the conditions when the requirement (2.2) is met one has to
calculate the ratio of the rise time, tR , to the duration of the shock-tube test time, �t5,
for typical shock-tube test parameters. Using equations (2.4) and (2.5) one obtains

tR

�t5
= τF

2

l

lch

√
1.8

l

dp

1 − ε

ε

γ + 1

2
(
M2

s − 1
) M2

s (γ + 1)

2 + (γ − 1) M2
s

. (2.6)

A series of solutions of equation (2.6) for two typical values of incident shock-wave
Mach number, Ms =1.3 and Ms = 1.5, and three relative lengths of the granular
sample, l/dp = 10, 40 and 200, yield the data shown in figure 3. The horizontal
line corresponds to the condition tR =�t5. The domain under this line provides the
conditions for reliable measurements of tR.. Figure 3 reveals that:

(i) By comparing the calculated straight lines, it is clear that the parameter tR/�t5
increases when l/dp or l/ lch increases. Thus, increases in l or decreases in dp result
in an increase in tR . This supports our earlier conclusion that experiments in a
standard shock tube with small particles or long granular columns are restricted by
the duration of the test time, �t5.

(ii) An additional way of testing long granular columns could be to change the
shock wave Mach number Ms: when it decreases, the granular sample length could
be increased (compare the dashed and solid lines).

To demonstrate the role of the small particles in the rise time, tR , refer to the results
of test number 2.2 of table 1 shown in figure 4. While the step-like input pressure, P5,
remains steady during a rather long time period of about �t5 ≈ 10 ms, the pressure
traces indicate that equilibrium was not reached even at the pressure port that was
nearest to the entrance of the granular sample (x = 20 mm). This was due to the small
size of the sand particles (dp = 0.3 mm) that resulted in a very small permeability
of the granular column. It is clear that any attempt to specify the rise time, tR , far
downstream from the entrance of the granular column in this test is doomed to fail.
In support of this conjecture equation (2.6) was solved for a test time duration of
�t5 = 3 ms and two limiting values of the particle’s diameter, dp . The resulting curves,
l = F (Ms), shown in figure 5, clearly indicate that the lengths of the granular samples,
l, which provide a means for evaluating the rise time, tR , have to be within the narrow
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Figure 4. Pressure signals registered upstream of and inside (at x = 20 mm, 120 mm, and
220mm) a granular column 1.895m long (van der Grinten et al. 1985).

180

160

140

120

100

80

60

40
1.0 1.2 1.4 1.6 1.8 2.0

l (
m

m
)

Ms

dp = 4 mm

dp = 0.4 mm

Figure 5. Calculated length of the granular sample vs. Mach number for a test time
duration of �t5 = 3 ms and two limiting values of the diameter of the particle.

domain of about 60–150 mm. As expected, a similar conclusion is evident from the
results shown in table 1 where it can be seen that all but two of the tested samples
(2.1 and 2.2) have a length l � 150 mm.

2.2. Data processing

Since regular shock tubes are best suited for producing Forchheimer-flow conditions
the resulting pressure traces could be used to specify the Forchheimer coefficient, b.

Evaluation of the Forchheimer coefficient, b

The procedure for evaluating the Forchheimer coefficient, b, in a controlled
laboratory test, is split into four distinct steps:

1) A set of probing granular samples of various lengths l < 200 mm is tested for
which it is likely that, at the end of the sample, the flow still complies with the
Forchheimer domain. The tested conditions should be similar (i.e. the same granular
material, ambient temperature and impact intensity).

2) The rise times, tR , are deduced from the recorded pressure traces.
3) The assumption that the resulting flow fields correspond to the Forchheimer-

flow domain must be confirmed. Based on equation (1.13), when this indeed is the
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case, the ratio of the measured rise times to l1.5 should not depend on the sample
length, since

tF
R

l1.5
=

(
1

c̃1

√
bγ

N

)
τF
2 = KF = Const. (2.7)

If this indeed is the case, the Forchheimer coefficient, b, could be readily obtained
from

b =

[
c̃1K

F

τF
2 (Ms)

]2
N

γ
. (2.8)

Evaluation of the Darcy coefficient, a

Adopting the above idea to evaluate the Darcy coefficient, a, suggests that one
should perform a set of controlled laboratory tests with much longer granular
samples in order to obtain a new set of rise times that correspond to the Darcy-
flow domain (Ref <ReD

f ≈ 0.1). Similarly to the foregoing presentation and based on
equation (1.12), this could be verified by checking whether the requirement

tD
R

l2
=

(
γ ν̃1

c̃2
1N

a

)
τD
1 = KD = Const. (2.9)

is fulfilled. If this is the case, then the Darcy coefficient, a, could be calculated from

a =
c̃2
1K

D

τD
1 (Ms)

N

ν̃1γ
. (2.10)

Recall that correlation (1.17) for the non-dimensional rise time, τD
1 , was specified

using the procedure demonstrated in figure 1(a). Since the critical values of Ref <ReD
f

and τD
1 were specified using the series of calculations of the endwall pressure profiles,

this ensures that the Darcy regime dominates, at least near the endwall. At the same
time, the upstream flow, which is much closer to the granular sample entrance, could
comply with the mixed or even Forchheimer flow conditions.

Unfortunately, our estimates, which are detailed in § 2.1, clearly show that the
related value of ReD

f must be extremely small for this case (ReD
f � 0.1). In fact, a

standard experimental design that is based on the endwall measurement and meets
the requirement ReD

f � 0.1 requires a granular sample of several metres long. A
similar consideration for the sidewall measurements (post-transmitted shock-wave
filtration flow) requires a sample that is tens of metres long. Since in experiments with
extremely long granular samples the rise times could reach tens of seconds such shock
tube tests are impractical for evaluating the Darcy coefficient a. Alternatively, the
problem could be solved by performing controlled laboratory tests in the mixed-flow
domain, i.e. 10 ≈ ReF

f > Ref >ReD
f ≈ 0.1 (see figure 2). The controlled laboratory tests

again start with short granular samples that ensure Forchheimer-flow conditions from
which the Forchheimer coefficient, b, could be found using the procedure described
above. Then, the resulting value of b is used as an input to generate the numerical
solutions of the common equation (1.8) with various values of a. Optimal matching
of the predicted and measured pressure curves provides the best value of a.

Unfortunately, the required length of the granular sample in order to be in the
mixed-flow domain is still too long. As a result, during a major part of the recording
period, in most shock tubes of regular size, the input conditions become unsteady.
Hence the numerical solution of the common equation (1.8) for this case must be
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Figure 6. Comparison between the measured (solid lines) and simulated (dashed and dotted
lines) endwall pressure signals. The experiments were reported by Smeulders et al. (1997).
The numbers of the experiments refer to table 1. Experiment 1.1: dp = 3 mm and l = 56 mm;
Experiment 1.2: dp = 1.3 mm and l = 61 mm.

performed using the actual boundary condition (pressure) that is acting at the front
edge of the granular sample.

3. Validation and typical applications
The diversity of the granular materials distributed throughout the world might

suggest that laboratory tests have little in common with real practical needs.
Morrison’s (1972, 1976, 1977) approach was the first attempt to overcome this by
combining the data in a pattern suitable for practical use. However, due to the
oversimplifications in his approach, the salient features that stemmed from it, namely
similar solutions, limiting pressure profiles and the boundaries between the different
filtration flow domains, require experimental verification. As will be shown below,
results of shock-tube tests, which fall in the Forchheimer-flow domain, are of special
interest for verification.

The first candidates for the validation procedure are the two pressure traces that
are presented in figure 6 by thick solid lines. The distinctive feature of these tests is
the significant difference between the diameters of the granules, dp , of the samples,
which were nearly similar in their lengths, l (in test 1.1 dp = 3.0mm and l = 56 mm
and in test 1.2 dp = 1.3 mm and l = 61 mm. Using the porosity, ε, the Forchheimer
coefficient, b, and the mean granule diameter, dp , that were reported by the authors,
the calculated Reynolds number, Ref , revealed that the test conditions corresponded
to the Forchheimer-flow domain. To ensure that this indeed was the case, the above-
mentioned four-step procedure was performed. First the rise time, tR , which by
definition is the time corresponding to 0.9�P5, was deduced from the pressure profile
(see the thin solid lines in figure 6). Then, using correlation (2.5) and equation (2.8)
the values of the Forchheimer coefficients, b, were calculated for each of these curves.
The significant discrepancy between the results available in the literature is shown
in table 2. For example, in test 1.2 the value of b as obtained by our analysis was
more than twice that predicted using Ergun’s coefficient, b0, which assumes spherical
particles. In contrast, the coefficient b reported for this material by Smeulders et al.
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Test KF × 103

no. Material dp [mm] l [mm] tR [ms] [ms/mm1.5] b [m−1] b0[m
−1]

1.1 Glass 3 56 1.08 2.62 1675 [1741(1)] 1275
1.2 Glass 1.3 61 2.28 4.79 6250 [2115(1)] 3082
3.1 Al2O3 1.67 22.5 0.35 3.28 1874 1125
3.2 Al2O3 1.67 67 1.75 3.25 1844 –
3.3 Al2O3 1.67 84 2.50 3.25 1836 –
3.4 PVC 3.33 39 0.58 2.24 870 845
3.5 PVC 3.33 58 1.00 2.26 890 –
3.6 PVC 3.33 95 2.10 2.26 890 –
3.7 PVC 3.33 138 3.60 2.22 858 –
4.1 Steel 1.04 17 0.28 3.99 2651 2596
4.2 Steel 1.04 32 0.72 3.97 2635 –
4.3 Steel 1.04 49 1.35 3.96 2572 –
4.4 Steel 1.04 69 2.24 3.91 2545 –
4.5 Steel 1.04 81 2.90 3.97 2635 –
4.6 Steel 0.45 26 0.82 6.16 6318 6254
4.7 Steel 0.45 35 1.28 6.18 6359 –
4.8 Steel 0.45 43 1.70 6.04 6074 –
4.9 Potash 0.45 12 0.38 8.89 13170 5300
4.10 Potash 0.45 24 1.05 8.94 13297 –
4.11 Potash 0.45 39 2.20 9.03 13580 –
4.12 Potash 0.45 53 3.45 8.94 13284 –
7.2 Steel 0.5 18 0.50 6.5 6188 6254
7.3 Steel 0.5 38 1.55 6.68 6286 –
7.4 Steel 0.5 49 2.30 6.71 6369 –
7.9 Glass 0.5 18 0.55 7.03 7349 –
7.10 Glass 0.5 38 1.70 7.26 7466 –
7.11 Glass 0.5 49 2.50 7.29 7525 –
7.12 Rimax 1.0 30 0.65 3.95 2235 3342
7.13 Rimax 1.0 54 1.58 3.99 2290 –
7.14 Rimax 1.0 60 1.83 3.98 2224 –
7.15 Rimax 1.0 66 2.16 4.02 2320 –
7.16 Rimax 2.4 48 0.90 2.77 1086 1036
7.17 Rimax 2.4 60 1.25 2.80 1120 –
7.18 Rimax 2.4 84 2.2 2.87 1170 –

(1) The value of b was reported by Smeulders et al. (1997). The conditions for the tests are given
in table 1.

Table 2. Demonstration of the significant discrepancy between the available results. The
conditions for the tests are given in table 1.

(1997) was about three times smaller than that obtained by our analysis (see table 1).
Such a great difference is rather surprising especially when compared with the 5 %
inaccuracy that was reported by the authors for their value of b, shown in square
brackets in table 2. It should be noticed however, that such a high degree of inaccuracy
could be the result of extrapolation and visual graphical estimation of the parameters
measured in their tests: pressure drop, flow rate and inlet gas properties (Antohe
et al. 1997). Our analysis is not subject to these effects. The sensitivity of the pressure
history to the Forchheimer coefficient, b, is demonstrated in figure 6. It is evident that
while the simulated results with the values of b obtained using our analysis (dotted
lines) agree excellently with the two recorded pressure traces, the simulated results
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obtained by Ergun’s coefficient (dashed lines) agree excellently with the results of test
1.1 while they completely miss the results of test 1.2.

Figure 7 shows examples of endwall pressure traces that are taken from Britan
et al. (2001a). The expected sensitivity to the length of the granular sample is evident.
However, as will be shown in figure 9, when presented in a non-dimensional form
these pressure traces coincide since they correspond to the single value of χ = 1. Note
that in tests 7.2 and 7.9 the length was 18 mm while in tests 7.3 and 7.10 it was
38 mm. The small shift between curves of equal sample length is probably due to the
change in the packing of the granular samples used in subsequent tests. The resulting
values of tR after processing these pressure traces are listed in table 2. These results
were then used for calculating the coefficients KF with the aid of equation (2.7). The
rather small discrepancy (about 10 %) between the obtained values of KF that are
shown in table 2 suggests that a Forchheimer-dominated flow had been established.
If this is the case, equation (2.8) could be used to calculate the appropriate values of
the Forchheimer coefficients, b, that are also shown in table 2.



Simplified analysis of gas filtration through granular media 161

1.0

0.8

0.6

0.4

0.2

0 0.5 1.0 1.5 2.0

(a)

(b)

(c)

1.0

0.8

0.6

0.4

0.2

0 0.5 1.0 1.5 2.0

7.10

7.2

7.9
7.3

18

θ

θ

1.0

0.8

0.6

0.4

0.2

0 0.2 0.30.1 0.4 0.5 0.6 0.7 0.8

2.1

1.1

1.2

θ

τ2

Figure 9. Generalized reproduction of the endwall pressure traces: (a) our results (the
numbers labelling the curves refer to tables 1 and 2); (b) Levy et al.’s (1996, 1999) results (the
numbers labelling the curves refer to table 3); (c) Smeulders et al.’s (1997) results (the numbers
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To give another proof that the flows are indeed Forchheimer dominated the endwall
pressure traces of experiments 3.1 to 3.7, 4.1 to 4.12 and 7.12 to 7.15 (see details in
table 1) were analysed in a similar way. For the test conditions listed in table 1, the
final results, which are shown by points in figure 8, were obtained as follows. Each
of the n recorded pressure traces was processed to obtain the rise times, tRi

, as a
function of the sample length, li . Thereafter, for each test in the series, which was
conducted with a similar granular material, the coefficient KF

i was calculated using
equation (2.7). The mean values of the coefficients, K̄F = (1/n)

∑n

1 KF
i , were then used
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Test KF × 103

number Ms l [mm] Material tR [ms] [ms/mm1.5] b [m−1]

1 1.38 40 SiC-10 0.40 1.58 390
2 1.38 60 SIC-10 0.75 1.61 404
3 1.38 81 SiC-10 1.20 1.65 425
4 1.38 41 SiC-20 0.50 1.90 560
5 1.38 62 SiC-20 0.90 1.84 530
6 1.38 83 SiC-20 1.45 1.92 560
7 1.38 48 Al2O3 0.68 2.04 648
8 1.38 93 Al2O3 1.82 2.02 650

Table 3. Test conditions of the experiments of Levy et al. (1993, 1996).

as an input to calculated the curves tR = K̄F l1.5, which are shown in figure 8 by solid
lines. Good agreement between the calculated curves and the points in this figure
provide clear evidence that the shock-induced filtration, in these tests, satisfies the
Forchheimer-flow conditions. By comparing the data of different series of experiments
it can be easily seen that as predicted by equation (2.5), the rise time, tR , indeed scales
with the diameter of the particles, i.e. tR ∼ (dp)−0.5.

Figure 9(a) presents a generalized reproduction of our results that were shown
previously in figure 7. All four endwall pressure traces Pw(t) − P1, when presented in
the non-dimensional coordinates, θ |χ=1 (τ2) = θw(τ2), are grouped around the single
limiting curve for Forchheimer-flow conditions. The manner in which the limiting
curves (dashed lines) were calculated was explained while discussing figure 1.

The small deviation between the experiments for the initial part of the calculated
curves is clear evidence of the diffusive character of equation (1.9b). When applying
our analysis to the endwall pressure traces that were recorded by Levy, Ben Dor &
Sorek (1993) and Levi et al. (1996) a similar behaviour is obtained (see figure 9b)
in spite of the fact that their samples were not granular materials but solid SiC and
Al2O3 porous materials (see table 3). The two pressure traces of Smeulders et al. (1997)
that were shown in figure 6 are also grouped around the limiting curve in figure 9(c).
However, pressure trace 3 in figure 9(c) (test 2.1 of table 1) that was also recorded by
Smeulders et al. (1997) lies away from the common trend. According to the material
characteristics that were reported by Smeulders et al. (1997), the conditions of this test
(with smaller particles and a longer granular column) correspond to the mixed-flow
domain (see figure 2). Therefore, the fact that this result does not group with the
two others should not be surprising. Once the Forchheimer coefficient, b, of this test
is evaluated a matching procedure between this pressure trace and the numerical
solution of the common equation (1.8) would theoretically provide the means for
estimating the Darcy coefficient, a.

Unfortunately, our estimates clearly show that the accuracy of the resulting
coefficient, a, is low and could be increased only when the contribution of the
viscous losses to the total energy losses increases. In this test as well as in the second
test of the same series (van der Grinten et al. 1985), reproduced in figure 4, all the
pressures were recorded close to the granular sample entrance where the contribution
of the viscous losses was rather small.

The absence of suitable experiments motivated us to conduct a new test that
complies with the developed mixed-flow conditions and has stronger viscous losses.
This test is described and analysed in the next section.
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of the granular column.

4. Evaluation of both the Darcy and the Forchheimer coefficients
4.1. Experimental details

The shock tube used for this test (figure 10) is a stainless steel cylindrical tube,
having an internal diameter of 40 mm and a wall thickness of 8 mm. Its distinctive
feature is a fast-acting valve, which replaces the traditional diaphragm technique
as a mean of generating shock waves. In the valve design an auxiliary pressure
chamber behind a light movable plastic piston is filled with the driving gas through
a high-pressure inlet until the piston closes the passage from the high- to the low-
pressure channel. The driver gas is then introduced into the high-pressure chamber
until the required pressure is reached. The valve is activated by quickly dumping the
gas inside the auxiliary pressure chamber. Owing to the suddenly imposed pressure
difference between the atmospheric pressure in the low-pressure channel and the high
driving pressure, the piston rapidly retreats. As a result, the high-pressure driver gas
discharges immediately into the low-pressure channel, and a shock-wave is formed.
The fast valve produces not only a sharp and well-defined shock wave, but also
provides a very high repeatability of the shock-wave Mach number in air at ambient
pressure (Britan et al. 2001a).

The shock tube channel has seven pressure ports and a buffer section, 76 cm long,
which prevents unwanted edge effects from influencing the measurements. Two ICP
(model 132A31) micro-sensors (T1 and T2 in figure 10) are flush mounted on the
sidewall upstream of the granular column to measure the incident shock wave arrival
times. These time measurements were used to calculate the shock-wave velocity just
prior to its head-on collision with the front edge (entrance cross-section) of the
granular sample. A PCB (model 113A) pressure transducer (T3 in figure 10) was used
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as a reference pressure gauge to record the gas pressure at the entrance cross-section
of the granular sample. The importance of the pressure recorded by this transducer,
as it provides the actual boundary condition for the numerical simulation, will be
outlined below. Four Kistler (model 603B1) pressure transducers (T4, T5, T6 and T7
in figure 10) were installed 190 mm, 685 mm, 1335 mm and 1740 mm downstream of
the front edge to record the gas pressure histories at the side surface of the granular
sample.

The pressure histories were transmitted through a PCB (model 442C04) conditioner
and/or Kistler (model 5010B1) charge amplifiers and stored using a GageScope 250
data acquisition system, which had a sampling rate of 100 kHz per channel on a PC
computer.

The rear edge (bottom) of the granular sample was placed against the rigid endwall
of the test section, which enabled a quick assembly and an easy handling of loose
packed natural sand (dp = 0.6–0.85 mm).

4.2. Gas dynamics analysis

The shock-tube flow

The foregoing discussion implies that in experiments with long granular samples
(when tR/�t5 > 1), the dependence of the input pressure (i.e. the pressure acting on
the entrance cross-section of the granular sample) must be accounted for, in order to
correctly analyse the filtration flow process. To clarify this feature, we first simulated
numerically the shock-tube flow upstream of the granular sample (for details see
Britan, Vasiliev & Zinovick 1992). The initial conditions, at t =0, were:

both the high- and the low-pressure chambers contained air (γ1 = 1.4 and γ4 = 1.4);

P4 = 7.5 bar, T4 = 300K, V4 = 0 along x � 2.0 m,

P1 = 1.0 bar, T1 = 300K, V1 = 0 along 2.0 < x � 3.5 m,

}
(4.1)

where the subscripts 1 and 4 correspond to the initial gas conditions in the low- and
the high-pressure chambers, respectively.

Figure 11 shows the (x, t)-diagram of the flow process as calculated numerically
using the ‘classical’ shock-tube theory for an ideal inviscid flow, for the case of
Ms = 1.49. Figure 12 shows the numerically simulated (a, c) and experimentally
recorded (b, d) sidewall pressure histories at the pressure port T3 (see figure 10)
located 50 mm upstream of the front edge (entrance) of the granular sample. The
main differences between the measured and simulated flow fields in the four parts
of this figure probably arise from the fact that in the ‘classical’ shock-tube theory
the flow is initiated by instantaneously rupturing an infinitely thin diaphragm that
separates the high- and low-pressure chambers, and the incident shock wave reflects at
a solid endwall, while in our shock tube, a fast opening valve replaces the diaphragm
and the incident shock wave reflects from the porous front edge of a granular sample.

The flow states ahead of the incident shock wave, behind the incident shock wave,
behind the incident rarefaction wave, ahead of the incident rarefaction wave and
behind the shock wave that was reflected at the front edge of the granular sample are
labelled (1), (2), (3), (4) and (5), respectively in figure 11. Corresponding letters mark
the times of arrival of the various waves at the front edge of the granular sample,
which is located at x = 3.5 m. Points A represent the time of arrival of the incident
shock wave at the front edge of the granular sample. At this moment the pressure
jumps from P1 to P5 (figure 12). Point B, which marks the arrival of the shock wave
that is reflected from the contact surface, restricts the test time period, as suggested
by the classical shock tube theory, to �t5 = 2 ms. The arrival of the rarefaction wave,
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Figure 12. The numerically simulated (a, c) and recorded (b, d) sidewall pressure histories
at the pressure port T3, that is located 50 mm upstream of the front edge (entrance) of the
granular sample (see figure 10).

marked as point D, significantly reduces the pressure at the entrance cross-section
of the granular sample both in the simulation and in the experiment. At this stage,
the rarefaction wave that was reflected earlier from the endwall of the high-pressure
chamber has reached the test section. The pressure jumps marked by points E, F
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and G are the result of refraction of the main reflected shock wave at the contact
surface. An inspection of figures 12(a) and 12(b) indicates that the simulated and the
measured pressure histories correlate well until the arrival of the shock wave (not
resolved by the simulations) reflected from the fast valve and recorded in figure 12(b)
as point A′.

The above analysis reveals the following important features of the pressure field in
the vicinity of the front edge of the granular sample.

1. The recorded pressure acting on the front edge of the granular sample is different
from that predicted by the classical shock-tube theory.

2. The length of the shock tube determines the duration of the pressure oscillations,
which are well predicted by the theory and are caused by subsequent back and forth
propagation of the shock and the rarefaction waves.

3. The peak-to-peak amplitude of the simulated pressure pulsations is symmetrical
and attenuates rather slowly. In contrast, the amplitude of the recorded pulsations
quickly decays, while the mean pressure level initially remains constant during the
first 60 ms and then starts to drop linearly in time (after point H in figure 12d).

4. The fast opening valve also contributes to the difference between the measured
and the simulated pressure histories. This is because the reflected shock wave interacts
with the valve and gives rise to a new shock wave that is directed towards the front
edge of the granular sample. This wave, which does not exist in simulations based on
the ‘classical’ shock-tube theory, provides additional compression of the gas flow and
supports the higher level of the recorded pressure inside the granular sample.

Filtration flow through a granular sample

The unsteady input pressure presented above, which acts on the entrance cross-
section of the granular sample, controls the filtration flow within the granular sample.
To better understand the nature of the filtration flow, the propagation of the main
disturbances along the granular sample must be considered. This could be done by
solving numerically equation (1.6) or (1.8). However, instead of applying the actual
boundary conditions (see figure 12d) the following approximated boundary conditions,
shown by a thin solid curve in figure 12(d), were used:

for the quasi-steady period between points A and H (0 � t � 60 ms)

�P (t) = 6.5 bar; (4.2)

for the linear pressure drop after point H (t � 60 ms)

�P (t) = 6.5 − 0.0083(t − 60) bar. (4.3)

The resulting (x, t)-diagram for this case is shown in figure 13. It is evident that the
filtration starts following the passage of the transmitted wave (TW) that separates
the undisturbed gas in the pores (1) and gas that has already been compressed by
the transmitted wave (2*). To eliminate confusion with the notation of the domains
in figure 11, the regions behind the transmitted and reflected waves are denoted,
respectively, by (2*) and (5*) in figure 13. The trajectory of the contact surface,
CS, separates the filtration flows into two different domains. Domain (2*) contains
relatively cold gas that initially occupied the pores of the sample and then was
compressed by the transmitted wave (TW). Subsequently, the gas that occupied
domains (6) and (7) was originally compressed and heated by the reflected shock
wave outside of the granular sample (see region 5 in the (x, t)-diagram in figure 11).

An inspection of figure 13 indicates that the resulting history of the interstitial flow
has several stages. During the quasi-steady period restricted by point H and prior to
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Figure 13. A numerically generated (x, t)-diagram illustrating the wave propagation through
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the arrival of the transmitted wave at the endwall, the flow behaves as if the sample
has an infinite length. The transmitted wave quickly decays (see figure 13), and thus,
it induces behind it an unsteady pressure that is indicative of the reducing capacity
of the granular sample. However, once the transmitted shock wave is reflected from
the endwall, the gas filtration cannot be treated independently of the rear end of the
sample. The transient pressure drop at the front edge of the granular sample further
complicates the problem. Starting from point H at the granular sample interface, the
information on the transient pressure drop moves over the granular sample (see the
trajectory marked by PD) and modifies the filtration flow at this stage. When applied
to the main problem considered here it is therefore of interest to know to what extent
these modifications in the flow conditions affect the values of the Darcy and the
Forchheimer coefficients (a and b) that were obtained using the hybrid method. This
question has been tested in two different aspects, as described in the following section.

One aspect is the sensitivity of the interstitial flow pressure to the sharp fluctuations
of the input pressure. To better illustrate this aspect, we first present in figure 14(a) all
the pressure traces that were recorded in our tests upstream and inside the granular
sample. The figure also includes black circular points that mark the times of arrival
of the pressure drop at the subsequent pressure port.

(i) Pressure trace T4 clearly demonstrates that the arrival of the reduced input
pressure indeed affects the filtration. In fact, at the point marked with a black circle the
initial pressure rise is levelled out and then shows little or no change over this value,
which is much smaller than the recovering level. Notice that outside the granular
sample (see trace T3), the input pressure decayed faster and the amplitude of the
pressure trace T4 ultimately exceeded the final level of the pressure trace T3.

(ii) Owing to the damping capacity of the granular material, sharp variations of
the input pressure inside the bulk became smooth and weak. The stepwise front and
further fluctuations of the input pressure signal T3 were changed inside the granular
sample to a gradual pressure rise in traces T5, T6 and T7. Note also the small
fluctuations of the amplitude in the pressure trace T4. These fluctuations represent
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Figure 14. (a) Pressure traces recorded in our tests upstream of and inside a granular sample
of sand. The black circular points mark the times of arrival of the pressure drop, PD, to the
pressure port. (b) Comparison between (1) the registered pressure traces; (2) their simulations
based on the simplified model; and (3) the full solution of Britan et al. (2006).

only weak responses to the strong tooth-shaped oscillations of the input pressure T3.
Similarly, while the time of arrival of the reduced input pressure is discernible as a
weak inflection point in the pressure traces T4 and T5, this has no impact on the
dynamics of the downstream pressure traces T6 and T7.

(iii) Combining the results shown in figures 12(d) and 13 reveals that the quasi-
steady input conditions between points A and H control the filtration flow in domains
(2*) and (6). In considering these domains, the pressure field could be described by
equations (1.6) or (1.8). Once the signals of the input pressure drop reach the relevant
pressure port (see the inflection point (H) in figure 12d), the filtration flow in domains
(7) and (8) starts to depend on the unsteady input conditions. From this time on,
equations (1.6) or (1.8) have to be solved under unsteady input conditions.

Another aspect to be characterized is the so-called ‘temperature effect’ or sensitivity
of the pressure field to the different temperature of the gas flow. Previous analysis
of the trajectory (CS) in figure 13 reveals that the gas flow acting on the pressure
transducers at ports T6 and T7 for a long time period is composed of the relatively
cold gas of domain (2*). Consequently, the filtration process at ports T6 and T7
better corresponds to the isothermal model of filtration, which was suggested by
Morrison (1972, 1976, 1977). By contrast, the temperature of the gas in domains (6)
and (7) and acting on the pressure transducers at ports T4 and T5 is much higher.
Therefore, the resulting heat transfer at ports T4 and T5 could cause deviations of
the pressure field from the one predicted by the simplified model. These deviations
(if they exist) could be evaluated using computer modelling based on our so-called
full-solution code (Britan et al. 2006). To confirm this, two numerical simulations
of the recorded pressure traces, one using the simplified model (equation (1.8)) and
another one using the just-mentioned full-solution code, were conducted. Figure 14(b)
summarizes the results of this analysis, where the registered pressure traces (curves 1)
are compared with simulations based on the simplified model (curves 2) and on
full-solution code (curves 3). Note that to resolve the unsteady system of conservation
equations including the heat transfer effect the full-solution code requires several
hours/run while the simplified solution needs less than 0.2 hours/run. In spite of this
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Figure 15. (a) Comparison between the recorded pressure traces T4 and T5 (1) and two
numerical simulations: (2) solutions of equation (1.9b) with b =8250 m−1; (3) solution of
equations (1.8) and (1.9b) using Ergun’s coefficients, a = a0 and b = b0 = 6000 m−1. (b) Com-
parison between the recorded pressure traces T6 and T7 (1) and two numerical simulations: (2)
solution of the common equation (1.8) with a = 2.7 × 109 m−2 and b =8250 m−1; (3) solution
of equation (1.9b) with b = 8250 m−1.

fact the two corresponding curves almost completely coincide and the agreement with
the registered pressure traces is quite good. It is therefore concluded that the effect of
high temperature on the pressure profiles is negligibly small.

4.3. Matching procedure and scaling of the pressure profiles

The foregoing discussion, which was aimed at determining both the Darcy and
the Forchheimer coefficients, is sufficient to enable one to definitely conclude that
the pressure ports T4 and T5 could be used as a base to specify the Forchheimer
coefficient, b. The main results that demonstrate the steps of the matching procedure,
which specifies this coefficient, are shown in figures 15(a) and 15(b). Two questions
must be answered at this stage:

Do the pressure profiles at least at the locations of the T4 and T5 transducers
correspond to the Forchheimer regime?

Does Ergun’s (1952) correlation give, in our case, acceptable agreement with the
measursed pressure histories?
For this purpose the numerical solutions of equations (1.8) and (1.9b) using Ergun’s
coefficients, a = a0 = 2.0 × 109 m−2 = and b = b0 = 6000 m−1 (see relations (1.2a) and
(1.2b) and approximations (4.2) and (4.3) for the boundary conditions were generated.
For each of the pressure ports T4 and T5 the resulted pair of curves that corresponds
to equations (1.8) or (1.9b) are so closely spaced that they could be considered as a
single curve (see curves 3 in figure 15a). Recall that the solution of equation (1.9b)
describes the pressure history in a Forchheimer-dominated flow while the common
equation (1.8) complies with a mixed-flow regime. Hence, close correlation between
those two solutions reveals the negligibly small role of viscosity and thus provides
support that Forchheimer flow conditions exist at pressure ports T4 and T5.

The answer to the second question can be found by comparing the numerically
simulated pressure curves to the experiment. The experimental pressure traces in
figure 15(a) demonstrate that the numerical solution (curve 3) failed to predict
accurately enough the pressure trace registered at port T5. Such a discrepancy
strongly suggests that the value of the Forchheimer coefficient b = 6000 m−1 used in
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Figure 16. (a) Comparison between the measured (1) and reconstructed (2) pressure traces
for the experiments of van der Grinten et al. (1985), and (b) the controlled test of the present
study. The black circles mark the times of arrival of the pressure drop at the pressure port.

the calculations of curves (3) should be corrected. To find the new, corrected value
of b a standard matching procedure was employed when the pressure trace recorded
at port T5 was compared to the results of a series of solutions of equation (1.9b)
with different values of b. As a final stage of this procedure, curves (2) which were
obtained by using b = 8250 m−1 provided the optimal matching to the two measured
pressure traces, T5 and T4. Consequently, the value b =8250 m−1 was adopted as the
correct Forchheimer coefficient.

Further inspection of the figure 15(b) shows, however, that the numerical solution of
equation (1.9b) with the just-established corrected value of the Forchheimer coefficient
b =8250 m−1 failed to predict the downstream pressure records T6 and T7. The evident
discrepancy between the experiments (solid lines 1) and the simulations (dashed
lines 3) implies that at least, at port T7, the filtration most likely complied with the
mixed-flow domain rather than the Forchheimer-flow domain. To confirm this, the
pressure trace recorded at port T7 was simulated using the common equation (1.8)
with b = 8250 m−1 and a series of different values of the coefficient a. The sample of the
results in figure 15(b) suggested that the optimal matching to the recorded pressure T7
(curve 1) was provided by the numerically predicted pressure trace (2) calculated with
a =2.7 × 109 m−2 and b = 8250 m−1. These coefficients also improved the agreement
between the predicted (curve 2) and the recorded (1) pressure traces at port T6.

In order to support the scaling procedure that was presented in § 2.2, as the first
example, the experimentally recorded pressure traces previously shown in figure 4
were selected because the input load in this test was close to being constant during
the entire test time (about 10 ms). Hence, the tested conditions complied well with the
steady-state approximation of the method. The recorded pressure traces of figure 4
are reproduced again in figure 16(a) and compared with the results of the scaling
procedure. As the basis for the scaling, the numerical solution of equation (1.9b)
was generated first to obtain the additional pressure history at the cross-section
located at x = 10 mm (not shown in this figure). Since the filtration flow was assumed
to comply with the Forchheimer domain, the exponent in relation (1.11) used for
the scaling was assigned the value j =1.5. As expected, the agreement between
the experimental (1) and the reconstructed (2) pressure histories was very good at
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the distances x = 20 mm and x = 120 mm. This suggested that the filtration flow at
both pressure ports was indeed of Forchheimer type. In addition, the fact that the
scaling procedure overestimated the pressure history at x = 220 mm, suggested that
this pressure port was positioned downstream of the domain appropriate to the
Forchheimer-flow conditions and hence, most likely, corresponded to the mixed-flow
domain.

As the next example for the scaling procedure, the results of our controlled
laboratory test previously shown in figure 14(b) were chosen. In figure 16(b) the
pressure traces recorded at the pressure ports T4 to T7 are reproduced again as solid
lines (1). As a basis for the scaling for this case the calculated pressure history at
x = 50 mm (not shown) was used. Recall that the scaling procedure was capable of
reproducing the experiment as long as the input conditions were steady. Although the
quasi-steady approximation (when, as can be seen in figure 12(d), the input pressure
was nearly constant) was considered to hold during the first 60 ms of our test, the
pressure drop that occurred at the input afterwards was eventually picked up at
the pressure ports downstream of the entrance. Hence, an interesting issue to evaluate
was the related deviation of the reconstructed pressure profiles (curves 2) from the
measured pressure traces (curves 1). In figure 16(b) this effect can be understood by
inspecting the black circular points that represent the trajectory of the pressure drop
(PD) of figure 13. As expected, the error in the scaling procedure appeared when the
pressure drop that was transmitted into the granular sample reached the related pres-
sure port. However, even prior to this moment, the scaling in figure 16(b) worked quite
well only at the first two pressure ports, T4 and T5, and it overestimated the pressures
recorded further downstream. This is consistent with our previous conclusion that the
flow at the pressure ports T4 and T5 complied with the Forchheimer-flow domain,
while the flow at ports T6 and T7 was closer to being in the mixed-flow domain.

4.4. Evaluation of the Darcy coefficient using small-scale tests

The above example clearly showed that a direct matching of the theory to a shock-
tube test could give the coefficient a if the coefficient b was specified or known in
advance and the filtration flow complied with the mixed-flow conditions. Since apart
from our last experiments, we failed to find in the literature other shock-tube tests that
comply with the mixed-flow conditions, let us refer to the combustion test of Asay
et al. (1996). In their experimental set-up, shown in figure 17(a), the burning products
of the HMX explosive penetrated into a short packed bed of inert SiC powder
having porosity of ε ≈ 0.26. The pressure sweep in figure 17(b) started at t =0 when a
voltage (12 V) was applied to the Profuse. After several milliseconds, the HMX grains
ignited and the pressure T1 in the burn chamber began to rise. The recorded pressure
histories at ports T2 to T4 showed the filtration phenomenon of the burning products
through the packed bed. This figure reveals that the extremely high and sharp input
pressure in the burn chamber (about 3200 bar) quickly turned into weak and smooth
pressure traces as it moved downstream along the packed bed (see the pressure traces
T2, T3 and T4). This result is consistent with another important finding that was
extracted by Asay et al. (1996) from their numerical simulations of the filtration
phenomenon: when a rapid flow of the hot burning products entered the front edge
of the packed bed, the input temperature (about 4000 K) dropped so quickly that
after propagating a distance of about 3 mm downstream it reached about 400 K. This
meant that gas filtration in Asay et al.’s (1996) experiment could be considered as
occurring under a constant temperature close to the room temperature. Notice that
the diameter of the granules, dp , that were used in their test, 1–5 µm, was more than
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Figure 17. (a) Schematic of the combustion test of Asay et al. 1995). (b) Typical pressure
traces measured during the combustion test at the entrance (T1) and inside (T2 to T4) the
packed bed of Asay et al. (1995).

three orders of magnitude smaller than the smallest particle listed in table 1. Since
based on equation (2.1) the Reynolds number was extremely small, about Ref ≈ 10−6,
isothermal Darcy flow conditions existed over most of the packed bed. Moreover,
in an attempt to avoid the complexities involved at the packed bed interface, Asay
et al. (1996) used as a left-hand boundary condition the measured pressure trace T2
and then specified the required macroscopic parameter of the filtration flow using
the pressure trace T3. Leaving aside the details of their data processing, it should be
noted that the matching procedure used by Asay et al. (1996) is sensitive to the input
parameters of their test. In fact, extremely high impact pressure inevitably results in
local changes in the packed bed porosity, ε, in addition to the possible changes in the
viscosity of the gas flow, µ, due to the high temperatures. Since the proposed hybrid
method does not include these mechanisms, analysis of filtration driven by extremely
high impact conditions through micron-sized materials needs a more complicated
theory and special tests.

In contrast, in most problems related to blast wave/structure interaction, the impact
is far from extremely high and the granular material is usually composed of sand-
sized particles. Experiments that eliminate the need for long samples while complying
with the mixed- or Darcy-flow conditions over a significant part of the granular
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Figure 18. Typical results demonstrating the numerical design of the controlled shock tube
tests. Dashed lines – numerical solution of equation (1.9b) for a Forchheimer-dominated flow.
Solid lines – numerical solution of the common equation (1.8) for a mixed flow.

bed could be of interest. Formal analogy with the experiment of Asay et al. (1996)
suggests for this purpose a shock-tube test with a continuous pressure drop at the
input to the granular bed. This pressure drop has to complement the viscous losses
to reduce of the interstitial velocity, Ṽ , and could be easily achieved by allowing the
rarefaction wave to overtake the incident shock wave. It is clear that if the overtaking
takes place before the time moment marked as (A) in figure 11, the rarefaction
wave will dominate the pressure fields behind the incident and the reflected shock
waves. To realize this scenario in a controlled shock-tube test with a triangular,
blast-shaped pressure profile at the front edge of the granular sample, the length
of the high-pressure chamber should be reduced to several centimetres (Britan et al.
1991). To verify this we focused on the simulated parameters of gas filtration through
a standard 200 mm long granular sample that is composed of loose packed spheres
having a diameter dp = 0.5 mm and porosity ε = 0.4. Correlations (1.2a) and (1.2b) for
this case resulted in the following values of Ergun’s coefficients: a0 = 16.2 × 108 m−2

and b0 = 5400 m−1. As boundary conditions, we used the following approximation of
the pressure trace that was measured and reported by Britan et al. (1991):

for 0 � t � �t �P5(t) = 2.35

(
t

�t

)
bar, �t = 2.5 ms,

for t < 0 and t > �t �P = 0.

As a result, the pressure profiles obtained from a series of solutions of the common
equation (1.8) and equation (1.9b) are compared to each other in figure 18 where the
inset represents the input pressure profile. Like the data in figure 15 the coincidence
of the two solutions (in this figure it is at a distance of x = 5 cm inside the granular
sample), indicates that Forchheimer-flow conditions were established. Hence, using a
trial-and-error method for matching these pressure traces and the experiment, one
could specify the coefficient b. If significant differences exist between the two solutions
at the endwall it means that mixed-flow conditions were established there. Then, the
known value of the coefficient b and the matching procedure applied to the endwall
pressure traces specify the required coefficient a.
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5. Summary and discussion
In the context of the so-called hybrid method the work presented here has demon-

strated the contribution of shock tubes to the problem of shock-induced filtration of
the gas flow through granular media. An important feature of the hybrid method is
that the common behaviours of the filtration process become visible naturally using
a simplified approach to the problem. In this way, the use of the simple calculation,
in itself, provides insight into the mechanisms of the filtration in addition to that
provided by controlled laboratory tests. In order for the hybrid method to become
a quantitative tool for practical applications, a calibration of the simplified model
of gas filtration with respect to available and new controlled shock-tube data was
performed. The main results of this method are as follows:

1. Conventional shock tubes yield quantitative information on the pressure field
inside granular samples that could be used only for simulating flows that satisfy the
Forchheimer-flow conditions (i.e. relatively short granular samples).

2. The boundaries between the three possible flow domains (Forchheimer, mixed
and Darcy flow) were identified. This complements the work of Morrison (1972, 1976,
1977) in which these boundaries were not specified.

3. In order to determine the key coefficient, namely the Forchheimer coefficient,
b, we have implemented a special procedure that combined a series of numerical
experiments and controlled laboratory tests.

4. A scaling procedure that enables one to reconstruct the pressure histories at
different locations along the granular sample, during the steady period of the input
conditions, by using a single measured pressure trace was suggested.

5. A simplified treatment of the wave process upstream and within a long (2.5 m)
sample of natural sand was conducted. Approximations (4.2) and (4.3) that were
applied, in the course of the present analysis, to the pressure trace recorded at the front
edge (entrance) of the sample allowed the test-time period to be extended to several
hundreds of microseconds. The two key parameters, the Darcy and the Forchheimer
coefficients, could be determined by applying a matching procedure between the
experimentally recorded and numerically simulated pressure traces within the sample.

6. As an alternative to these unusual measures (a long granular sample and extended
test time period) a new design of a controlled shock tube test with the Forchheimer-
and mixed-flow regimes that could be obtained with a standard granular sample was
suggested.

This study was conducted under the auspices of the Dr Morton and Toby Mower
Professorial Chair of Shock Wave Studies. The authors acknowledge the Israel Science
Foundation (Grants No.278/03, No.154/04) for financial support which made this
research possible.
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